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Medical Image Retrieval via Histogram of
Compressed Scattering Coefficients
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Abstract—The features used in many current medical im-
age retrieval systems are usually low-level hand-crafted fea-
tures. This limitation may adversely affect the retrieval per-
formance. To address this problem, this paper proposes a
simple yet discriminative feature, called histogram of com-
pressed scattering coefficients (HCSC), for medical image
retrieval. In the proposed work, the scattering transform, a
particular variation of deep convolutional networks, is first
performed to yield more abstract representations of a medi-
cal image. A projection operation is then conducted to com-
press the obtained scattering coefficients for efficient pro-
cessing. Finally, a bag-of-words (BoW) histogram is derived
from the compressed scattering coefficients as the features
of the medical image. The proposed HCSC takes the advan-
tages of both scattering transform and BoW model. Exper-
iments on three benchmark medical computer tomography
image databases demonstrate that HCSC outperforms sev-
eral state-of-the-art features.

Index Terms—Computer tomography (CT) image, fea-
ture extraction, medical diagnosis, medical image retrieval
(MIR), scattering transform.

I. INTRODUCTION

M EDICAL imaging plays a significantly important role
in the fields of computer-assisted diagnosis and medi-

cal analysis. Among different types of medical data, the images
are regarded as a source for the diagnosis aid because they are
able to directly capture the patient pathology [1]. Consequently,
a huge number of medical images are collected every day in
hospitals and medical institutions. To fully apply these medical
images, many techniques have been developed to handle the
obtained images from different aspects, such as data represen-
tation, storage, segmentation, and reconstruction.

Recently, medical image retrieval (MIR) has aroused consid-
erable research interest. For an input query medical image, the
MIR system will return several images whose contents are most
relevant to the query one. The retrieval results may not only
help to manage the massive medical images, but also provide
useful information to support the doctors to make decisions.
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Many MIR systems have been proposed in the literature, and
more insights can be found in [2] and [3].

The core component of an MIR system is to extract fea-
tures from the medical images as many classical content-based
image retrieval approaches. The derived features are required
to reflect the essential and discriminative characteristics of the
medical images. Numerous research efforts have been devoted
to extracting discriminative features of the medical images from
different perspectives so far.

A. Related Work

Shape, a basic attribute of the image, is commonly used to
derive features for MIR. The authors in [4] evaluated the perfor-
mance of several representative shape characteristics using the
X-ray image retrieval. In their experiments, the following fea-
tures were considered: global shape properties (such as center
of gravity, area, perimeter, and major axis length and angle), in-
variant moments, scale space filtering-based features, polygon
approximation-based features, and Fourier descriptors. Simi-
larly, Xu et al. proposed shape representation methods using the
length, absolute orientation, and relative orientation of the line
segments as well as the angles associated with multiple open
triangles to design a spine X-ray image retrieval system [5].
Though these shape representation features achieve satisfactory
results for some medical retrieval applications, they are heavily
dependent upon a boundary detection or the region-of-interest
segmentation operations. These preprocessing steps may limit
the feasibilities of shape-based features.

The color information of medical images has also been ap-
plied to feature extraction. The authors in [6] developed an
MIR system using a quantization of the Hue, Saturation, Value
(HSV) space as features. Akakin and Guran took more color
spaces into account in their system [7], namely the mean and
standard values of each channel of red–green–blue, CIELab, and
HSV spaces. Additionally, eight statistics features, i.e., mean,
standard deviation, skewness, kurtosis, maximum and minimum
values, energy, and entropy, were also used. Promising results
have been achieved by these features.

Compared with shape and color information, the texture char-
acteristics of medical images are more important because they
contain the core in identifying tissues [8]. The features used
in mainstream MIR systems are mainly extracted using the
texture information. The strategies of traditional texture rep-
resentation approaches have been analogously applied in many
MIR systems.
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The well-known Gabor and wavelet transforms have been
proven to be effective tools to extract features from natural tex-
ture images. Based on these findings, Traina et al. proposed
a MultiWaveMed system based on both Daubechies and Ga-
bor wavelets [9]. The mean and standard deviation values of
the magnitudes of different transformed coefficients were uti-
lized as features. Similarly, the authors of [6] developed the
texture features using Gabor responses in different directions
and scales, and Quddus and Basir extracted texture features
of magnetic resonance (MR) images based on the gray-scale
values of magnitudes of multiscale wavelet coefficients [10].
Apart from Gabor and wavelet transformed domains, Akakin
and Gurcan extracted characteristics from the cooccurrence his-
tograms [7]. Their features consist of different statistics (such
as mean, standard deviation, and correlation) of the normalized
cooccurrence histograms. Besides, Larsen et al. proposed shape
index histograms that capture the second-order image structure
at multiple scales as features of indirect immunoflourescence
images of HEp-2 cells [11]. The texture features are usually
integrated with the shape and color information to achieve a
comprehensive representation of the medical image.

Owning to the great success of local binary pattern (LBP)
[12] in texture image representation, many local patterns have
also been proposed for medical images. LBP has been directly
performed to the brain MR images [13] and lung computer to-
mography (CT) images [14] for feature extraction. A directional
binary wavelet pattern was proposed by integrating LBP with
bitplane decomposition and binary wavelet transform [15]. Sim-
ilarly, Li and Meng applied LBP to the subimages of wavelet
transform results of wireless capsule endoscopy images [16],
and the authors in [17] extended the traditional local derivative
pattern (LDP) to the cooccurrence of similar ternary edges to
derive local features for biomedical images. It can be found that
these methods mainly are either to perform LBP in a specific
transformed domain or to improve the existing encoding ways.
More work of local patterns for medical retrieval can be found
in [18]–[21].

B. Our Main Contributions

Although having achieved success in certain tasks, the afore-
mentioned features are usually low-level hand-crafted features,
and they have difficulties in discovering more abstract repre-
sentations of medical images in higher levels. To address this
limitation, several researchers analyze the medical images us-
ing deep learning techniques. The notable convolutional neural
network (CNN) has been successfully applied to derive features
for lung pattern classification [22], bodypart recognition [23],
and cell nuclei detection and classification [24]. Recently, the
scattering transform [25], [26], a variation of deep convolutional
networks, has been proposed to represent the image contents by
cascading wavelet transform and modulus pooling operations.
Compared with CNN, the properties and optimal configurations
of scattering transform have been well understood. It offers
abstract representations of images and shows impressive perfor-
mance to classify the texture images [27], [28]. It is interesting
to extract high-level features of medical images using the scat-
tering transform.

In this paper, we propose a novel feature, named histogram
of compressed scattering coefficients (HCSC), for MIR. Given
a medical image, the scattering coefficients, obtained by the
scattering transform, are stable to deformations and preserve
high-frequency information. To efficiently handle these coef-
ficients, a compression operation is carried out to reduce the
dimension of the scattering coefficients. Finally, a bag-of-words
(BoW) HCSC is used as the texture feature of the medical im-
age. HCSC features are easy to implement yet discriminative
because it takes advantages of both the scattering transform and
the BoW model. Experiments are carried out to evaluate the
proposed HCSC features, and state-of-the-art performance is
obtained for medical CT images retrieval.

Compared with previous works, our main contributions are
threefold.

1) To the best of our knowledge, this is the first time to
derive texture characteristics of medical CT images using
scattering transform.

2) We propose a novel feature, named HCSC, using the
scattering representations of CT images.

3) We conduct experiments on three benchmark CT image
databases to evaluate the performance of the proposed
features, and state-of-the-art results have been achieved.

The rest of this paper is organized as follows: Section II
details the proposed HCSC features, and Section III evaluates
the proposed features from different aspects. Section IV finally
draws the conclusions.

II. METHODOLOGY

In this section, we present the proposed HCSC features in
detail. An overview of HCSC will be first given, and then, each
step of the HCSC extraction will be introduced successively.

A. Overview of HCSC

The derivation of the proposed HCSC consists of the follow-
ing modules. With a given training image set, we first perform
the scattering transform to each image to obtain the translation
invariant scattering representations of all images. These scatter-
ing coefficients cannot be directly applied for feature extraction
because they are of high dimension. Then, a compression oper-
ation is carried out to the obtained coefficients for a dimension
reduction purpose. Based on the compressed scattering coef-
ficients (CSC), the BoW model is finally used to derive the
HCSC.

B. Compressed Scattering Coefficients

A wavelet transform is obtained by a convolution of the signal
and a specific wavelet. Let ϕ and R be a signal bandpass filter
and a group of rotations r. Rrx means the rotation of x ∈ R2

by an angle r. The directional wavelet is achieved by rotating ϕ
along angle r and scaling it by 2j as follows:

ϕj,r (x) = 2−2jϕ(2−jRrx). (1)

The directional wavelet transform of a signal f at position x for
scale 2j is f � ϕj,r (x), where � is the convolution operation.
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To improve the computational efficiency of the well-known
scale-invariant feature transform (SIFT) descriptor, the authors
in [29] proposed a DAISY descriptor that can be represented as
follows:

|f � ϕj,r | � φJ (x) (2)

where φJ (x) = 2−2J φ(2−J x) is a low-pass filter and j � J .
Equation (2) indicates that the local features of f can be ex-
tracted by averaging the wavelet coefficient amplitude |f � ϕj,r |.

The researchers in [27] found that the low-pass convolution
operation in (2) may eliminate the high-frequency characteris-
tics of f . To restore part of the information lost, the wavelet
coefficient amplitude |f � ϕj1 ,r1 | will be convoluted with an-
other wavelet, which is |f � ϕj1 ,r1 | � ϕj2 ,r2 . Then, the scatter
coefficients of f are represented as [27]

||f � ϕj1 ,r1 | � ϕj2 ,r2 | � φJ (x). (3)

Note that j2 should be smaller than j1 because it has been proven
that |f � ϕj1 ,r1 | � ϕj2 ,r2 is negligible if j2 � j1 .

Iterating this operation p times, a vector of scattering coeffi-
cients at x is obtained as

Sp,J f(x) = |||f � ϕj1 ,r1 | � · · · � |ϕjp ,rp
| � φJ (x) (4)

where j1 < · · · < jp < J and {r1 , . . . , rp} ∈ R. The outputs
of the first iteration (p = 1) are SIFT-type descriptors, and the
results of the second iteration (p = 2) are the complementary
invariant information [28]. Compared with traditional wavelet
transforms, the modulus and averaging pooling operations in
(4) ensure that the scattering transform is highly nonlinear and
translation invariant from coefficients. More details about scat-
tering transform can be found in [26]–[28].

For a given image I , we can obtain a series of coefficients after
performing scattering transform. These coefficients contain dif-
ferent characteristics of the original image. Let scl(m,n) denote
the lth scattering coefficient matrix of I , where l = 1, 2, . . . , L,
m = 1, 2, . . . ,M , and n = 1, 2, . . . , N . L is the total number
of the matrix, and {M,N} is the size of the matrix. Take
the first CT image shown in Fig. 3 as an example. Its size is
512 × 512, and the {L, M , N} for its first and second layer
output after scattering transform are {32, 64, 64} and {384,
64, 64}, respectively. Fig. 1 visually illustrates several exam-
ples of these scattering coefficient matrices. It can be seen that,
unlike the commonly used texture features, the scattering trans-
form decomposes the original CT image into different semantic
components, such as the edge and shape information. These
coefficient matrices are high-level representations because they
not only provide a comprehensive description, but also contain
more structure characteristics of the image, which will benefit
the feature extraction procedure.

Though scl(m,n) carries plenty of image characteristics, it is
difficult to directly handle these coefficients because of the high
dimension. As mentioned before, for a 512 × 512 image, all
scl(m,n) of the second layer output contain 384 × 64 × 64 real
numbers, which is six times of the image number itself. It will
take a large amount of storage and computation cost to handle
these data, and the time complexity is also unacceptable. The
well-known principle component analysis is a commonly used

dimension reduction algorithm, and it has been successfully
used to many applications. However, it does not work well in
this situation because the derivation of the eigenvector of the
covariance matrix is also with high computation cost.

To address this problem, a compression process is conducted
to the coefficients before feature extraction. Projection opera-
tions are commonly used compression methods because they
may not only reduce the dimension, but also preserve some
properties of original data. Due to these advantages, projection
operations have been successfully applied in many feature ex-
traction algorithms [30]–[34]. For the efficiency purpose, the
following simple projection algorithms are considered.

1) Vertical Projection (VP) and Horizontal Projection
(HP): These two projections compress the data by accumu-
lating scl(m,n) along the vertical or horizontal directions as
follows:

scv
l (n) =

M∑

m=1

scl(m,n) (5)

sch
l (m) =

N∑

n=1

scl(m,n). (6)

After this projection operation, the size of scl(m,n) reduces to
1 × N or M × 1.

2) Ring Projection (RP) [30] and Central Projection
(CP) [31]: To perform these two projections to scl(m,n), the
Cartesian coordinate system is first transformed to polar coor-
dinate system. Denote the polar coordinate version of scl(m,n)
by s̄cl(ρ, θ), where ρ and θ respond to the polar radius and angle,
respectively. The RP and CP can be achieved as

scr
l (ρ) =

∫
s̄cl(ρ, θ)dθ (7)

scc
l (θ) =

∫
s̄cl(ρ, θ)dρ. (8)

scr
l (ρ) and scc

l (θ) perform integral along the polar radius and
angle directions.

We call these projection results as CSC. Compared with
scl(m,n), CSC inevitably remove some image characteris-
tics during the projection operation, but they have following
advantages.

1) They require less storage space. The data number of the
compression results is smaller than those of original im-
age and scattering coefficients. Take the CT image with
512 × 512 in size as an example. The total data number
of scv

l (n) of the second layer output is 9.38% and 1.56%
compared with the numbers of the original image and the
corresponding scattering coefficients.

2) Extracting features from the compressed result is more ef-
fective. Because the data are reduced to much smaller di-
mension compared with the original size, it will take less
computation complexity to handle the compressed data.

3) The compressed data reveal the distribution of image
characteristics. Assuming sl(m,n) to be a joint proba-
bility function, scv

l (n) and sch
l (m) can be regarded as

margin distributions of scl(m,n) and are suitable for fur-
ther processing. On the other hand, scr

l (ρ) and scc
l (θ) are
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Fig. 1. Visual illustration of some selected scattering transform results of the first CT image in Fig. 3.

Fig. 2. Flowchart of codebook generation for HCSC.

the margin distributions of s̄cl(ρ, θ) on the polar coordi-
nate system.

Due to the above superiorities, we derive features using CSC.

C. HCSC Extraction

There are many ways to derive features based on the CSC. We
elected to use the well-known BoW model because of its good
performance in several domains, as reported in the technical
literature [35]–[37].

The key step of BoW is to develop a codebook from the
obtained CSC. Let S = {Ik

c |k = 1, . . . ,K, c = 1, . . . , C} be
a set of training images, where C is the class number in
the database, and K is the image number for each class for
training. To each Ik

c , we extract the CSC as described in
Section II-B. Here, we use the VP of the scattering coefficients
in (5) as an example. Let sc = {scv

h |h = 1, . . . , H} be all the
vertical CSC extracted from S, where H is the total number
of the derived CSC. The codebook can be generated by super-
vised or unsupervised ways in the literate. For computational
efficiency, we develop the codebook by clustering over sc. The
flowchart of the codebook generation is summarized in Fig. 2.
The typical algorithm, K-means, is applied here because of its
simpleness and good performance. Each cluster, derived by per-
forming K-means to sc, is regarded as a codeword, and all
codewords form the codebook. It requires sufficient samples
to generate an accuracy codebook. Hence, we make use of the
second layer output of the scattering transform results, which
contains more coefficients than those of the first layer output,
to develop the codebook. Denote the obtained codebook by
B = {bg |g = 1, . . . , G}, where bg is the gth cluster of sc, and
G is the number of clusters. The detailed procedures to derive
B are summarized as Algorithm 1.

After obtaining the codebook B, a histogram is used to de-
scribe the distribution of the CSC of each image. The hard voting
is utilized to generate the histogram, which assigns each CSC
of the image to its closest codeword. Suppose there are a total
of Z CSC for a CT image. The coding representation of the zth
CSC, denoted by cscz , can be achieved as

vz
g =

{
1, if g = arg minj ‖cscz − bj‖,
0, otherwise.

g = 1, . . . , G. (9)

Algorithm 1: Codebook generation of CSC.
Input: A set of training images, and the codeword number

G.
Output: The codebook B = {bg |g = 1, . . . , G}.

(a) Perform scattering transform to all the image in
the training set to obtain the scattering
coefficients;

(b) Project each scattering coefficient matrix into
a vector along the vertical or horizontal direction
using (5) or (6) to obtain all the CSC.

(c) Find G clusters {b1 , . . . , bG} by conducting the
K-means algorithm to all the CSC as codewords.

Then, the occurrence frequency of all CSC on the codeword
B will be calculated as

h(g) =
Z∑

z=1

vz
g , g = 1, . . . , G. (10)

A normalization operation is finally performed as

h̄(g) =
h(g)

∑G
g=1 h(g)

, g = 1, . . . , G. (11)

h̄ is regarded as the HCSC of the original image.
From the above descriptions, we can conclude that the pro-

posed HCSC features of medical images are flexible to imple-
ment. However, HCSC features are quite discriminative charac-
teristics of medical images because 1) the scattering transform
provides extensive texture characteristics with different scales
and directions, and 2) the BoW model is able to reveal the es-
sential distribution of the obtained texture characteristics. The
projection operations perfectly bridge the gap between the scat-
tering transform and the BoW model.

III. EXPERIMENTS

This section provides detailed experimental results to evalu-
ate the performance of the proposed HCSC features from dif-
ferent aspects. The experimental settings are first presented,
including the databases, similarity measurement of two feature
vectors, evaluation criteria of retrieval performance, and com-
parative retrieval methods. After that, experiments are carried
out to test the effects of different parameters of HCSC. Subse-
quently, the proposed HCSC features are compared with several



1342 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 5, SEPTEMBER 2017

Fig. 3. Medical CT image examples of from EXACT09-CT database.
Each image is randomly selected from the corresponding category.

state-of-the-art features using three CT image databases. Finally,
a discussion on these results is given.

A. Experimental Settings

1) Databases: Three publicly available CT image
databases, namely EXACT09-CT [20], [38], TCIA-CT [20],
[39], and NEMA-CT [40], are used in our experiments. The
detailed information about these databases is as follows:

1) Extraction of Airways from CT 2009 (EXACT09) con-
sists of CT scans at the chest [38]. Each image is stored us-
ing the Digital Imaging and Communications in Medicine
(DICOM) format and is a size of 512 × 512. Follow-
ing the setting in [20], we select a subset of EXACT09,
the CASE23 of testing set, to form the EXACT09-CT
database to evaluate our proposed features. There are to-
tally 675 CT images in this database, and these images
are grouped into 19 categories, as in [20]. The image
numbers for each category are 36, 23, 30, 30, 50, 42,
20, 45, 50, 24, 28, 24, 35, 40, 50, 35, 30, 28, and 55,
respectively. Fig. 3 illustrates the example images of this
database with one image of each category.

2) There are a large number of cancer images in the
cancer image archive (TCIA) [39]. The TCIA-CT
database, collected by the authors in [20], is used here,
which is generated by using the 604 CT images of
the DICOM series number 1.3.6.1.4.1.9328.50.4.2 of
study instance UID 1.3.6.1.4.1.9328.50.4.1 for subject
1.3.6.1.4.1.9328.50.4.0001. These images are grouped
into eight categories, and the image numbers of each
category are 75, 50, 58, 140, 70, 92, 78, and 41. Fig. 4 de-
picts the example images of this database with one image
of each category.

3) The National Electrical Manufacturers Association
(NEMA) [40] database provides CT images of different
parts of the human body that can be applied for research

Fig. 4. Medical CT image examples of from TCIA-CT database. Each
image is randomly selected from the corresponding category.

Fig. 5. Medical CT image examples of from NEMA-CT database. Each
image is randomly selected from the corresponding category.

and diagnosis purposes. Following the experimental set-
ting in [20], we create the NEMA-CT database by select-
ing 315 CT images with dimension 512 × 512 from the
CT0001, CT0003, CT0057, CT0060, CT0080, CT0082,
and CT0083 cases. These images are further categorized
into nine groups that have 36, 18, 36, 37, 41, 30, 23, 70,
and 34 images, respectively, representing different parts
of the body. The images of this database with one image
of each category are shown in Fig. 5 as examples.

2) Similarity Measurement: Let h̄1 and h̄2 be two HCSC
feature vectors extracted from two CT images. Many histogram
distances can be used to measure the similarity between them.
The well-known histogram intersection is applied in this paper,
which can be achieved by

HI(h̄1 , h̄2) =
G∑

g=1

min(h̄1(g), h̄2(g)). (12)

The larger HI(h̄1 , h̄2) indicates more similarity between h̄1
and h̄2 .

3) Evaluation Criteria: In the following experiments, each
CT image in the database is chosen as a query image and
matched with the rest images. The images with top S largest
histogram intersection values are treated as the retrieval results.
We follow the setting of [20], namely the images with ten largest
similarity measurements are returned as a set of retrieval results.
The precision and recall for the query image are commonly
used to evaluate the retrieval results, which can be achieved as
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Fig. 6. Retrieval performance (ARP) of HCSC features obtained by different codebooks for 1000 repeats via (a) TCIA-CT, (b) EXACT09-CT, and
(c) NAMA-CT databases, respectively.

follows:

P =
Number of relevant images retrieved

Number of images retrieved
(13)

R =
Number of relevant images retrieved

Number of relevant images in the database
. (14)

Note that a retrieved image is treated as relevant if it is in the
same category as the query image.

In this work, the average retrieval precision (ARP) and av-
erage retrieval rate (ARR), the means of average precision and
average recall per category, are used as evaluation criteria as in
[20]. Besides, Fscore is also considered, which can be obtained
by [19]

Fscore =
2 × ARP × ARR

ARP + ARR
. (15)

4) Comparative Retrieval Methods: For each database,
we compare our method for MIR with retrieval performance
using features commonly used in the technical literature. These
features include LBP [41], local ternary pattern (LTP) [42], LDP
[43], local tetra pattern (LTrP) [44], local ternary cooccurrence
pattern (LTCoP) [17], local mesh pattern (LMeP) [45], spherical
symmetric 3-D local ternary pattern (SS-3D-LTP) [18], and local
wavelet pattern (LWP) [20], respectively.

B. Effects of Parameters

This section investigates the effects of different parameters in
the derivation of HCSC from following perspectives.

Because selection of different training samples from the
database may yield different codebooks, we first study the ro-
bustness of HCSC obtained by different codebooks. All three
databases are used here. More specifically, two training samples
per category are randomly chosen from the database to generate
the codebook, and the number of codewords in the codebook is
set to 200. The VP is employed here. This procedure is repeated
1000 times to obtain 1000 different codebooks, and the HCSC
features are extracted using these codebooks. Then, the image
retrieval test is carried out as described in Section III-A3. The re-
trieval performance in terms of ARP using all three databases is
plotted in Fig. 6. A statistics analysis of these results, including
the minimum, maximum, mean, and variance, is also presented
in Table I. The differences between the maximum and mini-
mum values of the TCIA-CT, EXACT09-CT, and NEMA-CT

TABLE I
STATISTICS ANALYSIS OF THE RETRIEVAL PERFORMANCE (ARP) OF HCSC

FEATURES OBTAINED FROM DIFFERENT TRAINING SAMPLES

Min Max Mean Variance

TCIA-CT 0.9327 0.9639 0.9511 3.0973e-5
EXACT09-CT 0.8874 0.9200 0.9056 2.9694e-5
NEMA-CT 0.9642 0.9958 0.9817 2.1596e-5

TABLE II
RETRIEVAL PERFORMANCE (ARP) OF HCSC FEATURES OBTAINED BY

DIFFERENT PROJECTION ALGORITHMS

TCIA-CT EXACT09-CT NEMA-CT Aver.

HCSCv 0.9510 0.9057 0.9818 0.9462
HCSCh 0.9461 0.8963 0.9813 0.9412
HCSCc 0.9473 0.9186 0.9752 0.9470
HCSCr 0.9273 0.9095 0.9503 0.9290

databases are 0.0312, 0.0326, and 0.0316, respectively. These
values are small compared with the corresponding mean values
of each criterion. On the other hand, the variance values given in
Table I also indicate that all criteria of 1000 repeats are quite sta-
ble. Therefore, we can conclude that HCSC features are robust
to different codebooks.

Next, the effects of different projection directions are inves-
tigated. As aforementioned in Section II-B, four directions are
considered here, namely VP, HP, RP, and CP. To keep brevity,
denote the obtained features by HCSCv , HCSCh , HCSCr , and
HCSCc . For each database, we randomly select two samples per
category to form the training set and derive the HCSC features by
different projection algorithms. This procedure is run 500 times.
The average ARP values of all databases are reported here. As
seen from Table II, HCSCv obtains the best performance for the
TCIA-CT and NEMA-CT databases, while HCSCc wins other
features for the EXACT09-CT database. Considering the aver-
age performance, HCSCc achieves the most satisfactory results,
slightly surpassing HCSCv . These results indicate that CP and
VP are more suitable to explore the information distributions of
CT images. Owing to VP is easier to implement than CP, it is
used to derive HCSC in the following experiments.
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Fig. 7. Retrieval performance (ARP) of HCSC features obtained by different numbers of training sample and codeword via (a) TCIA-CT, (b)
EXACT09-CT, and (c) NAMA-CT databases, respectively.

TABLE III
COMPARISON RESULTS OF DIFFERENT METHODS ON THE EXACT09-CT

DATABASE

Methods Evaluation Criteria

ARP ARR Fscore

LBP 0.6503 0.1951 0.3002
LTP 0.6209 0.1854 0.2855
LDP 0.5440 0.1619 0.2495
LTrP 0.5782 0.1729 0.2662
LTCoP 0.7348 0.2216 0.3405
LMeP 0.6323 0.1891 0.2911
SS-3D-LTP 0.6700 0.2009 0.3091
LWP 0.8300 0.2487 0.3827
HCSC 0.9150 0.2883 0.4384

Best results are in bold.

We finally test the performance of HCSC features obtained by
different numbers of training samples and the codewords. The
numbers of training samples are set to 2, 3, 4, and 5, respec-
tively. The codebook sizes, namely the number of codewords,
are set to 100, 150, 200, and 250, respectively. For each setting
of training samples and codebook sizes, the retrieval experiment
is run 25 times to obtain the average ARP value for evaluation.
The retrieval results of all three databases with different pa-
rameter settings are illustrated in Fig. 7. It can be seen that the
distributions of ARP values are different for all databases. In
these cases, the differences between the maximum and mini-
mum of the ARP measurement for TCIA-CT, EXACT09-CT,
and NEMA-CT databases are 0.0057, 0.0164, and 0.0058, re-
spectively. Generally speaking, the retrieval results of HCSC
slightly improve as the increments of training sample and code-
word numbers. However, it will take more computation cost to
obtain the codebook with large training and codeword numbers.
It is necessary to trade off the computation complexity and re-
trieval accuracy. In the following experiments, we empirically
set the training sample and codeword numbers to 3 and 200 to
obtain a balance.

C. Experiments on the EXACT09-CT Database

This experiment evaluates the performance of HCSC using
the EXACT09-CT database. The performance of all methods
in terms of ARP, ARR, and Fscore are illustrated in Table III.

TABLE IV
COMPARISON RESULTS OF DIFFERENT METHODS ON THE TCIA-CT

DATABASE

Methods Evaluation Criteria

ARP ARR Fscore

LBP 0.6691 0.0974 0.1700
LTP 0.7183 0.1033 0.1806
LDP 0.6906 0.1005 0.1755
LTrP 0.7469 0.1095 0.1910
LTCoP 0.7440 0.1092 0.1904
LMeP 0.7371 0.1077 0.1879
SS-3D-LTP 0.8054 0.1171 0.2045
LWP 0.8840 0.1309 0.2280
HCSC 0.9512 0.1452 0.2520

Best results are in bold.

For this CT image database, LDP performs worst, while the
proposed HCSC features achieve the most satisfactory perfor-
mance. The retrieval results of proposed method are improved by
{68.20%, 78.07%, 75.71%} and {10.24%, 15.92%, 14.55%} as
compared with LDP and the second best method LWP in terms
of {ARP, ARR, Fscore}.

D. Experiments on the TCIA-CT Database

The TCIA-CT database is used in this experiment. The com-
parative methods used in Section III-C are considered here too,
and they are evaluated by the identical experimental settings
used for the EXACT09-CT database. The retrieval performance
of all algorithms is presented in Table IV. We can observe that
the extended local patterns obtain better results than those of the
original LBP method for this database, and the performance of
LTCoP and LMeP is comparable. Among all local patterns, LWP
gets obvious improvements in contrast with other approaches.
The proposed HCSC improves LWP by a large margin, i.e.,
{7.60%, 10.92%, 10.53%}, using the corresponding criteria.

E. Experiments on the NEMA-CT Database

We further investigate the retrieval performance of the pro-
posed method using the NEMA-CT database. Table V shows
the ARP, ARR, and Fscore of all methods. We can ob-
serve that these methods yield close performance for this
database. LWP and LDP gain more satisfactory results among all
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TABLE V
COMPARISON RESULTS OF DIFFERENT METHODS ON THE NEMA-CT

DATABASE

Methods Evaluation Criteria

ARP ARR Fscore

LBP 0.9055 0.2933 0.4431
LTP 0.9200 0.3023 0.4551
LDP 0.9422 0.3108 0.4674
LTrP 0.9369 0.3096 0.4654
LTCoP 0.9215 0.3031 0.4562
LMeP 0.9309 0.3062 0.4608
SS-3D-LTP 0.9224 0.3026 0.4557
LWP 0.9532 0.3133 0.4716
HCSC 0.9833 0.3364 0.5013

Best results are in bold.

comparative methods, outperforming LBP by about 0.05 via
ARP measurement. The proposed HCSC features surpass all
the other features, and it gets improvements of {3.16%, 7.37%,
6.30%} by comparing with the results of the second best feature
LWP in terms of ARP, ARR, and Fscore .

F. Discussion

As a deep convolutional network whose filters are wavelet
operators, the scattering transform explores the informative and
discriminative characteristics of the CT images. The projection
and BoW model, involved in HCSC, further provide a compact
representation of numerous scattering coefficients. These merits
ensure the representation capacity of HCSC. The experimental
results also demonstrated that HCSC achieved satisfactory per-
formance in medical CT image retrieval compared with several
state-of-the-art features.

On the other hand, the implementation of HCSC may con-
sume more time in contrast with several hand-crafted local fea-
tures. For HCSC extraction, the most time-consuming step lies
in the scattering transform, which takes more computational
cost because it is a particular type of deep convolutional net-
works. Nevertheless, for medical retrieval, especially for diag-
nostic purposes, the retrieval accuracy is relatively more impor-
tant than the implementation efficiency. Therefore, the proposed
HCSC features are promising features for CT image retrieval.

IV. CONCLUSION

In this paper, we developed the HCSC as a novel feature
for MIR. First of all, we performed a scattering transform to
a medical image to achieve its translation invariant representa-
tions. After the compression operation, a histogram was derived
as the feature vector using the BoW framework. In order to
evaluate the HSCS features, we conducted MIR experiments
using three CT image databases, namely EXACT09-CT, TCIA-
CT, and NEMA-CT, respectively. Experimental results demon-
strated that the proposed features obtained the state-of-the-art
performance in comparison with several existing features, such
as LBP, LMeP, LWP, and SS-3D-LTP features. There are sev-
eral interesting directions deserving further studies, such as

developing more discriminative projection methods to compress
the scattering coefficients, applying more powerful frameworks
to CSC for feature extraction, and improving the scattering trans-
form for image representation.

ACKNOWLEDGMENT

The authors would like to thank the editor and anonymous
reviewers for their insightful comments and constructive sug-
gestions, and to sincerely thank the authors of [20] for providing
the NEMA-CT database.

REFERENCES

[1] D. L. Rubin, H. Greenspan, and J. F. Brinkley, “Biomedical imaging
informatics,” in Biomedical Informatics. New York, NY, USA: Springer,
2014, pp. 285–327.

[2] H. Müller, N. Michoux, D. Bandon, and A. Geissbuhler, “A review of
content-based image retrieval systems in medical applicationsclinical ben-
efits and future directions,” Int. J. Med. Informat., vol. 73, no. 1, pp. 1–23,
2004.

[3] X. Zhang, W. Liu, M. Dundar, S. Badve, and S. Zhang, “Towards large-
scale histopathological image analysis: Hashing-based image retrieval,”
IEEE Trans. Med. Imag., vol. 34, no. 2, pp. 496–506, Feb. 2015.

[4] S. Antani, L. R. Long, G. R. Thoma, and D.-J. Lee, “Evaluation of shape
indexing methods for content-based retrieval of X-ray images,” Proc.
SPIE, vol. 5021, pp. 405–416, 2003.

[5] X. Xu, D.-J. Lee, S. Antani, and L. R. Long, “A spine X-ray image retrieval
system using partial shape matching,” IEEE Trans. Inf. Technol. Biomed.,
vol. 12, no. 1, pp. 100–108, Jan. 2008.

[6] H. Muller, A. Rosset, J.-P. Vallee, and A. Geissbuhler, “Comparing fea-
tures sets for content-based image retrieval in a medical-case database,”
Proc. SPIE, vol. 5371, pp. 99–109, 2004.

[7] H. C. Akakin and M. N. Gurcan, “Content-based microscopic image re-
trieval system for multi-image queries,” IEEE Trans. Inf. Technol. Biomed.,
vol. 16, no. 4, pp. 758–769, Jul. 2012.

[8] J. C. Felipe, A. J. Traina, and C. Traina, Jr, “Retrieval by content of medical
images using texture for tissue identification,” in Proc. 16th IEEE Symp.
Comput.-Based Med. Syst., 2003, pp. 175–180.

[9] A. J. Traina, C. A. Castañón, and C. Traina, Jr, “Multiwavemed: A system
for medical image retrieval through wavelets transformations,” in Proc.
16th IEEE Symp. Comput.-Based Med. Syst., 2003, pp. 150–155.

[10] A. Quddus and O. Basir, “Semantic image retrieval in magnetic reso-
nance brain volumes,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 3,
pp. 348–355, May 2012.

[11] A. B. L. Larsen, J. S. Vestergaard, and R. Larsen, “HEp-2 cell classification
using shape index histograms with donut-shaped spatial pooling,” IEEE
Trans. Med. Imag., vol. 33, no. 7, pp. 1573–1580, Jul. 2014.

[12] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

[13] D. Unay, A. Ekin, and R. S. Jasinschi, “Local structure-based region-of-
interest retrieval in brain MR images,” IEEE Trans. Inf. Technol. Biomed.,
vol. 14, no. 4, pp. 897–903, Jul. 2010.

[14] L. Sørensen, S. B. Shaker, and M. De Bruijne, “Quantitative analysis of
pulmonary emphysema using local binary patterns,” IEEE Trans. Med.
Imag., vol. 29, no. 2, pp. 559–569, Feb. 2010.

[15] S. Murala, R. Maheshwari, and R. Balasubramanian, “Directional binary
wavelet patterns for biomedical image indexing and retrieval,” J. Med.
Syst., vol. 36, no. 5, pp. 2865–2879, 2012.

[16] B. Li and M. Q.-H. Meng, “Tumor recognition in wireless capsule en-
doscopy images using textural features and SVM-based feature selection,”
IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 3, pp. 323–329, May 2012.

[17] S. Murala and Q. J. Wu, “Local ternary co-occurrence patterns: A new
feature descriptor for MRI and CT image retrieval,” Neurocomputing,
vol. 119, pp. 399–412, 2013.

[18] S. Murala and Q. J. Wu, “Spherical symmetric 3D local ternary patterns
for natural, texture and biomedical image indexing and retrieval,” Neuro-
computing, vol. 149, pp. 1502–1514, 2015.

[19] S. R. Dubey, S. K. Singh, and R. K. Singh, “Local diagonal extrema
pattern: A new and efficient feature descriptor for CT image retrieval,”
IEEE Signal Process. Lett., vol. 22, no. 9, pp. 1215–1219, Sep. 2015.



1346 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 5, SEPTEMBER 2017

[20] S. R. Dubey, S. K. Singh, and R. K. Singh, “Local wavelet pattern: A
new feature descriptor for image retrieval in medical CT databases,” IEEE
Trans. Image Process., vol. 24, no. 12, pp. 5892–5903, Dec. 2015.

[21] S. R. Dubey, S. Singh, and R. Singh, “Local bit-plane decoded pat-
tern: A novel feature descriptor for biomedical image retrieval,” IEEE
J. Biomed. Health Informat., vol. 20, no. 4, pp. 1139–1147, Jul. 2016,
doi: 10.1109/JBHI.2015.2437396.

[22] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S.
Mougiakakou, “Lung pattern classification for interstitial lung diseases
using a deep convolutional neural network,” IEEE Trans. Med. Imag.,
vol. 35, no. 5, pp. 1207–1216, May 2016.

[23] Z. Yan et al., “Multi-instance deep learning: Discover discriminative local
anatomies for bodypart recognition,” IEEE Trans. Med. Imag., vol. 35,
no. 5, pp. 1332–1343, May 2016.

[24] K. Sirinukunwattana, S. E. A. Raza, Y.-W. Tsang, D. R. Snead, I. A. Cree,
and N. M. Rajpoot, “Locality sensitive deep learning for detection and
classification of nuclei in routine colon cancer histology images,” IEEE
Trans. Med. Imag., vol. 35, no. 5, pp. 1196–1206, May 2016.

[25] S. Mallat, “Recursive interferometric representation,” in Proc. 18th Eur.
Signal Process. Conf., 2010, pp. 716–720.

[26] J. Bruna, “Scattering representations for recognition,” Ph.D. dissertation,
Ecole Polytechnique, Palaiseau, France, 2013.

[27] J. Bruna and S. Mallat, “Classification with scattering operators,” in Proc.
IEEE Conf. Comput. Vision Pattern Recog., 2011, pp. 1561–1566.

[28] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
Aug. 2013.

[29] E. Tola, V. Lepetit, and P. Fua, “DAISY: An efficient dense descriptor
applied to wide-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 5, pp. 815–830, May 2010.

[30] Y. Y. Tang, B. F. Li, H. Ma, and J. Lin, “Ring-projection-wavelet-fractal
signatures: A novel approach to feature extraction,” IEEE Trans. Circuits
Syst. II, Analog Digit. Signal Process., vol. 45, no. 8, pp. 1130–1134,
Aug. 1998.

[31] Y. Y. Tang, Y. Tao, and E. C. Lam, “New method for feature ex-
traction based on fractal behavior,” Pattern Recognit., vol. 35, no. 5,
pp. 1071–1081, 2002.

[32] G. Liu, Z. Lin, and Y. Yu, “Radon representation-based feature descriptor
for texture classification,” IEEE Trans. Image Process., vol. 18, no. 5,
pp. 921–928, May 2009.

[33] R. Lan and J. Yang, “Orthogonal projection transform with application to
shape description,” in Proc. 17th IEEE Int. Conf. Image Process., 2010,
pp. 281–284.

[34] R. Lan, J. Yang, Y. Jiang, C. Fyfe, and Z. Song, “Whitening central
projection descriptor for affine-invariant shape description,” IET Image
Process., vol. 7, no. 1, pp. 81–91, 2013.

[35] H. M. Wallach, “Topic modeling: Beyond bag-of-words,” in Proc. 23rd
Int. Conf. Mach. Learn., 2006, pp. 977–984.

[36] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-features
image classification,” in Proc. 9th Eur. Conf. Comput. Vision, 2006,
pp. 490–503.

[37] T. Li, T. Mei, I.-S. Kweon, and X.-S. Hua, “Contextual bag-of-words for
visual categorization,” IEEE Trans. Circuits Syst. Video Technol., vol. 21,
no. 4, pp. 381–392, Apr. 2011.

[38] P. Lo et al., “Extraction of airways from CT (EXACT’09),” IEEE Trans.
Med. Imag., vol. 31, no. 11, pp. 2093–2107, Nov. 2012.

[39] K. Clark et al., “The Cancer Imaging Archive (TCIA): Maintaining and
operating a public information repository,” J. Digit. Imag., vol. 26, no. 6,
pp. 1045–1057, 2013.

[40] NEMA-CT Image Database. (2012). [Online]. Available: ftp://medical.
nema.org/medical/Dicom/Multiframe/
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